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THEORY OF THOMSON SCATTERING FROM A WEAKLY IONIZED PLASMA* 

by R i c h a r d  G. Seashoi tz 

Lewis Research C e n t e r  

SUMMARY 

The theory of Thomson scattering from a weakly ionized plasma is extended to in­
clude the effects of unequal electron and ion temperatures,  a constant magnetic field, and 
electron drift. The Born scattering formula and the fluctuation-dissipation theorem are 
used to calculate the differential backscattering c ross  section. The plasma is described 
by the hydrodynamic (continuum) equations for the conservation of mass ,  momentum, and 
energy of each species. Included a r e  electron-neutral and ion-neutral collisions but not 
collisions between charged particles. The results given a r e  valid if the wavelength of the 
probing wave is greater  than the ion-neutral mean f r ee  path, With no magnetic field the 
backscattered power is shown to be  generally less  than that found from a collisionless 
calculation and to be dependent on the ion-neutral and electron-neutral collision frequen­
cies when the electron to ion temperature ratio Te/Ti does not equal 1. A magnetic 
field normal to the incident wave causes the backscattered power to be increased for 
Te/Ti in the common experimental range of 1to 10; it is shown that the scattered power 
may increase with Te/Ti ra ther  than falling off in accord with the usual (1 + Te/Ti)- 1 

relation. The effect of electron drift (less than the critical velocity corresponding to the 
onset of instability) on the Thomson scattering spectrum and on the total scattered power 
is calculated. As the electron drift velocity is increased, the spectrum develops a sharp  
peak at a frequency shift corresponding to the ion acoustic wave, and the total scattered 
power is enhanced. 

INTRODUCTlON 

An important new technique of plasma diagnostics is based on Thomson, o r  incoher­
ent, scattering of electromagnetic radiation. Although originally applied to  the study of 

* 
Based, in part ,  on a dissertation submitted to Case Western Reserve University in 

partial fulfillment of the requirements for the degree of doctor of philosophy in January 
1970. The work was partially supported by the National Science Foundation. 



the ionosphere (refs. 1to 6 ) ,  Thomson scattering measurements have also been used in 
the diagnosis of laboratory plasmas using high power l a se r s  as the radiation source 
(e.g. , ref .  7).  The measurement of the Thomson scattered light of a pulsed ruby laser 
has been suggested (ref. 8) as a method of studying re-entry plasmas. Other possible 
applications of Thomson scattering of laser  light include measurements in rocket exhaust 
and explosion generated plasmas. 

Thomson scattering measurements offer the important potential advantage of being 
able to measure many quantities of interest ,  such as electron and ion densities, temper­
atures  , drift velocities , and even velocity distributions at a specific interior point in  the 
plasma. Techniques that involve the insertion of physical probes (e. g. , Langmuir 
probes) into the plasma offer much less  spatial resolution and can disturb the plasma. 
Other radiation based diagnostic methods either measure what leaks out of the plasma, 
as with spectroscopic methods, or  measure an average value along a path through the 
plasma as with microwave and laser interferometry techniques. 

Thomson scattering measurements were first used in studies of the ionosphere. In 
1958, Gordon (ref. 1) suggested that, if a beam of radio waves with a frequency well 
above the plasma cutoff frequency were sent into the ionosphere, the radiation scattered 
by the f r ee  electrons could be  detected. Analysis of the spectrum and scattered power 
could provide information about the electron density and temperature. He noted that this 
measurement could be  made above, as well as below, the altitude of maximum electron 
density. In his calculation he assumed that the electrons were in random thermal motion 
s imilar  to neutral particles. He predicted that the scattered signal should have a spec­
tral width corresponding to the thermal velocity of the electrons since their motion would 
cause the scattered signal to be  Doppler shifted with respect to the incident wave. 

Shortly after Gordon's initial work, Bowles (ref. 2) successfully observed this phe­
nomenon using high power radar .  The scattered power agreed with that predicted by 
Gordon; however, Bowles was not able to observe the broadening of the spectrum that 
had been calculated. He explained this discrepancy by modifying the theory to include 
the electrostatic interaction between the electrons and ions and concluded that the spec­
tral width should correspond to the ion, rather than to  the electron thermal velocity. 

With the observations of Bowles as a stimulus many workers attacked the problem 
theoretically. The early work was done by Dougherty and Farley (ref. 3), Salpeter 
( refs .  9 and lo) ,  and Fejer (ref. ll),who dealt primarily with plasmas in thermal equi­
librium. More recent works by Salpeter (ref. 12), Rosenbluth and Rostoker (ref. 13), 
Buneman (ref. 14), and Farley (ref. 6) have extended the theory to include unequal elec­
tron and ion temperatures. All this work has been based on kinetic theory calculations. 

Cohen (ref. 15) took a somewhat different approach and used very simple two-fluid 
collisionless hydrodynamic (continuum) equations to calculate the Thomson scattering 
spectrum. His  continuum theory disagreed with the kinetic theory calculations in that 
the spectrum he obtained consisted of only sharp  spikes since the broadening effect of 
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Landau damping was not included. A more complete Continuum theory based on both two 
and three fluid models was given by Tanenbaum (ref. 16) for equal electron and ion tem­
peratures.  His  calculations included collisions between the charged particles and the 
neutrals and gave results that agreed very well with the calculations of Dougherty and 
Farley (ref. 5) who had included collisions in their kinetic theory. 

The advantages of the continuum theories over the kinetic theories a r e  that they a r e  
inherently simpler and collisional effects a r e  easily included. Indeed, the continuum 
theories a r e  only valid when the mean f ree  path is less than the characteristic length of 
the probing wave and the collisional damping outweighs the Landau damping. 

In this report the continuum theory of Thomson scattering is extended to include 
scattering from plasmas with unequal electron and ion temperatures , a constant magnetic 
field, and electron drift. Electron-neutral and ion-neutral collisions a r e  included in the 
theory but collisions between charged particles are neglected. Thus the theory is not ap­
plicable to plasmas with very low electron temperatures where electron-ion collisions 
become dominant. The method used follows that of reference 3 (also s e e  ref.  17), which 
used the Born scattering formula and the fluctuation-dissipation theorem which gives the 
spectrum of the fluctuations of a linear system in thermal equilibrium. The new resul ts  
presented herein make it possible to  analyze Thomson scattering experiments in  the 
lower ionosphere and in other weakly ionized plasmas where collisional effects are im­
portant and where kinetic theory calculations have not yet been made. Furthermore,  in  
those cases where kinetic theory calculations have been made and where the continuum 
theory is also valid, the continuum theory has the advantage of being easier to apply. 

GENERAL THEORY 

The phenomenon of Thomson scattering in a plasma is dependent on fluctuations in 
the number density of the electrons. If the electrons were stationary and randomly dis­
tributed, the total scattered power would be zero; however, because of the thermal 
motion of the electrons, fluctuations in the electron number density do exit. Further -
more ,  when the Debye length is less  than the wavelength of the probing wave, collective 
plasma effects come into play and the fluctuations of the ions influence the electron fluc­
tuations. The scattering may be thought of as an interaction between the incident wave, 
with wave vector k and a thermally excited wave in the plasma. The scattered wave,

-0’ 
with wave vector k ’ is related to h0 by ks = ko + k,(as shown in fig. 1) where & is 

“S
the wave vector of the spatial Fourier component of the electron number density fluctua­
tions that causes the scattering. 
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Figure 1. - Relation between wave vectors of incident, scattering, 
and  scattered waves. 

Thomson Scattering Cross Section 

It can be shown (ref. 18) that the differential scattering cross  section for a medium 
with a fluctuating dielectric constant is 

4 
ab(wo - 0) dw = ko L 

3 s in2 p 

(4.)2 c2 

where ab is the power scattered per unit solid angle per  unit volume per unit frequency 
per unit incident power. (All symbols are defined in appendix A. ) In this formula wo 

and ko are the angular frequency and wave number of the incident wave, p is the angle 
between the electric vector of the incident wave and the direction of propagation of the 
scattered wave, w is the deviation of the frequency of the scattered wave from the inci­
dent wave, and k is the wave vector of the scattering wave (k-= -2,k0 for backscattering) 
Also, ((aE(w) ?)-is the power spectrum of the fluctuating part of the permittivity A �  and 
is defined as the Fourier t ransform of the auto correlation fluctuation of A � ;  that is, 

where the angular brackets on the right hand side denote a t ime average. Note that the 
kN dependence of A c  a r i se s  because Ac has been expanded in a Fourier se r ies  in a box 
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of sides L ,  where L has been taken to be  much larger than the scattering volume. 
To calculate A � ,  recall  that for t ransverse electromagnetic waves in a plasma with 

plasma frequency we = (No e2/meeo)1/2 the dispersion relation may be written as 

2 2  2 2k c  = o O - o  (3)0 e 

provided wo is much greater  than the electron collision and cyclotron frequencies 
2(ref. 19). Using this dispersion relation for the plasma and noting that ko2 = pOE(r,t) wo,-

the scattering cross  section becomes 

ub(wo - w) d o  = L3 2re  sin2 p (/AN(-&,w)I2) dw 

where AN is the fluctuating part of the electron number density and re = e2/47r EOmec2 

is the classical electron radius. Thus only the electron density fluctuations cause 
scattering . 

FIuctuation-Dissipation Theorem 

To use equation (4)the power spectrum of the fluctuations of the electron number 
density must be  found. A form of the fluctuation-dissipation theorem due to Callen, 
Barasch, and Jackson (ref. 20), who generalized the original form of the theorem of 
Nyquist (ref. 2 1) to any linear system in thermal equilibrium is used. This theorem has 
previously been used by Farley,  Dougherty, and Barron (ref. 4)  to calculate Thomson 
scattering in a collisionless plasma. For a system in thermal equilibrium, the theorem 
may be  stated as follows. 

Suppose that a set  of generalized forces Vi(t) a r e  applied to the system. The system 
responses a r e  represented by Ii(t) where the spectral  components of Vi and I.1 a r e  r e ­
lat ed by 

13I i (W)  = C Y . . ( w )  Vj(W) (5) 
j 

and where Y.. is a generalized admittance tensor.  The ra te  of change of energy of the 
11 

system is 

dW-= Vi(t) Ii(t)
dt i 
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For high temperatures (or low frequencies) where KT>> hw . the fluctuation-dissipation 
theorem may be  stated as 

* 
((Ii(w) I j (w) 1) dw = (Y.. + Yji) dw 

277 lJ 

where the spectral  function on the left hand side is defined by  

* 
((Ii(w) Ij(w)J} eiwTdw = (Ii(t) Ij(t + 7)) 

that is, (/Ii(w) I j (w)  1) is the Fourier transform of the c ross  correlation function of the 
fluctuating quantities Ii(t) and I-(t). (For high frequencies where �io> KT, eq. (7) mustJ
be  modified to include quantum effects by replacing KT with 1/2 Eu co?h (f ik>/2~T);e. g.  , 
for T = 300 K this change must be  made if  w >/ 4 ~ 1 0 ~ ~rad/sec.)  

The fluctuation-dissipation theorem is applied to a specific system which is in equi­
librium by choosing the Ii to correspond to the desired macroscopic variable. The rela­
tion for the r a t e  of change of energy of the system is then used to identify the quantities 
that correspond to the Vi. Finally, the equations of motion of the system are examined 
to find the proper admittance tensor Y.. that re la tes  the Ii and the Vi. The fluctuation­

11
dissipation theorem may then be applied to determine the fluctuations of the quantity cor­
responding to the Ii. The fluctuations of the Ii may also be  thought of as arising from 
fluctuations of stochastic forces Vi. The fluctuation-dissipation theorem may then b e  
alternatively written as 

(pi(w)Vj(w)l) dw = 271 pi1*+ Y:.')11 dw 

A simple example is to find the voltage fluctuations across  a resis tor  R at tempera­
ture  T. The system is one dimensional, so  the admittance tensor reduces to one element 
of value 1/R, and the fluctuation-dissipation theorem gives the power spectrum of the 
voltage fluctuations 

(iV(w)12) d o  = R d o  
71 

Note that since we allow w to take on both positive and negative values, this expression 
is 1/2 t imes the standard form of Nyquist's theorem. 
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EFFECT OF COLLISIONS ON THOMSON SCATTERING WITH UNEQUAL 

ELECTRON AND ION TEMPERATURES (B = 0) 

The first case that is examined is the scattering of electromagnetic waves from elec­
tron density fluctuations in a weakly ionized plasma with no magnetic field. Dougherty 
and Farley (ref. 5) have shown that for equal electron and ion temperatures,  collisions do 
not affect the total backscattered power. Here it is shown that when the electrons and 
ions a r e  not at the same temperature,  the total backscattered power is dependent on the 
ion-neutral and electron-neutral collision frequencies. 

Farley (ref. 6) has calculated the scattering c ross  section for unequal electron and 
ion temperatures,  but only for the collisionless case.  H e r e  it is found that for 
Te/Ti -> 10, the total scattering c ross  section is substantially less  than that of the colli­
sionless calculation, but always greater  than a cross  section that varies with Te/Ti as 
[l + (Te/Ti)]-'. As the collision frequencies ven and vin increase,  the total scattered 
power approaches the (1 + Te/Ti)-' curve, although it does not reach it even in the limit 
veri, vin -.w. Also, for Te/Ti > 5 ,  the  ratio of the collision frequencies ven/vin, with 

L 


v­
i n  fixed, has a large effect on the total scattered power, although the shape of the 
spectrum is essentially unchanged. 

Evaluat ion of Backscat ter ing Cross Sect ion W i t h  

Unequa l  E lec t ron  a n d  I o n  Temperatures 

The backscattering c ross  section, from equation (4),is 

so  the scattering may b e  thought of as being an interaction between the incident wave, 
which is taken to be  proportional to ei(wOt-kOz), and the spatial Fourier component of the 
fluctuating part of the electron number density AN whose wave vector is 2k0. (In the 

remainder of this report  only backscattering is treated; however , the theory may easily 
be  extended to other scattering angles by using equation (4)in place of equation (11)with 
k _ =  k - k

"S "0' 
The magnitude of & is then given by lk I = 2k0 s in  e/2 where e is the 

angle between ko and k,.) 
To calculate the thermal fluctuations of the electrons, a weakly ionized plasma is 

considered in which the electrons and ions each have Maxwellian distributions but not nec­
essarily at the same temperature. It is assumed that the temperature of the neutrals and 
ions a r e  equal. Because of the large difference between the electron and neutral masses ,  
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the electrons tend to exchange energy slowly with the heavy particles so that each species 
may achieve a Maxwellian distribution, but at different temperatures.  In order that this 
temperature difference may b e  sustained under steady-state conditions , it is hypothesized 
that some external energy source,  such as a constant electric field, is acting on the 
plasma. 

The model used for the plasma is that of two fluids of charged particles, the electrons 
and ions, each of which is coupled to the neutral particles by collisions and which interact 
because of the self -consistent electric field. Short range electron-ion collisions a r e  
neglected. 

The fluctuations of the electrons and ions a r e  calculated separately by applying the 
fluctuation-dissipation theorem to fictitious se t s  of particles that a r e  identical to the real  
electrons and ions except that no forces due to the electric field are included. The actual 
fluctuations on the electron number density a r e  then found by using Maxwell's equations 
to include the interaction between the electrons and ions due to the self-consistent elec­
t r i c  field. 

In order  to calculate the response function of each fictitious fluid, a longitudinal oscil­
lating force F', is applied to the s species (s takes on the value e for electrons and 
i for ions). The ra te  of change of energy of the s species in a volume L3 is 

dW- = L3 E , . &
dt 

where Ss = NssS is the flux density of the s species. With no applied magnetic field, 
the response & is in the same direction as the applied force Es,so the vector notation 
can b e  dropped. A scalar  admittance function Y s  is introduced that relates the response 
to the applied force: 

rs = Y ~ F ~  

(Application of the fluctuation-dissipation theorem to a system with a tensor response 
function is treated in appendix B. ) These admittance functions will be  obtained from the 
equations of motion of each se t  of fictitious particles. 

To apply the fluctuation-dissipation theorem, identify Fs with V and then, com­
paring equations (6) and (12), note that the response I must b e  identified with L3rS and 

n 

Y with YsL". The fluctuation-dissipation theorem (eqs. (7) and (9)) may thus be written 
in either of the forms 

K T S-Re Ys dw 
3L7i  
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K T S  

or 

(IFs 1') dw = -Re -1 dw 
L37r yS 

The quantities Fe and Fi may be considered to be stochastic forces that act on the 
electrons and ions, respectively. 

The self-consistent electric field, given by Maxwell's equations , will be an additional 
force that acts  on the charged particles.  The Maxwell equation 

v x g = d % + zaD 
at 


is used. Here V X H, = 0, since only longitudinal oscillations cause fluctuations in the 
electron number density. 

Equation (16) may be expressed in t e r m s  of the flux densities as 

re - ri = YI(eE) (17) 

where 

With the inclusion of the force due to the electric field, the equations for the electron and 
ions become 

re= Ye(Fe - eE) 

ri = Yi(Fi + eE) 

These two equations together with equation (17) form a closed set of equations for the 
electron and ion flux densities that can be solved once we know Fe, Fi, Ye, and Yi. 
Solving equations (17) and (19) for re gives 

FeYe(Yi + YI) + FiYeYir = . - ~~ ~~ e Ye + Yi + YI 

Assuming that the stochastic forces on the electrons and ions are independent, that 
is, that (IFe(w) Fi(w) 1) = 0,  the power spectrum of re is 
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---- - -  

Using equation (15) for (I Fe I 2) and (I Fi I 2, and the continuity equation for the electrons 

aAN r- + v .  Ne = o  (22)at 

yields the power spectrum of the electron number density fluctuations 

(IAN(k,w) I2)dw = k2 KTe 1 Ye(Yi + .-YI> Re (-ye + -Ti 

w 2 77L3 Y e + Y i + Y I  

To this point the analysis is essentially that of Farley (ref. 6) who then calculated the 
admittance functions for a collisionless plasma. Here Farley's work is extended by cal­
culating the Ye and Yi when collisions are important. For this purpose the approach 
of Tanenbaum (ref. 16) is followed and use is made of the transport equations for mass ,  
momentum, and energy with the heat flow t e r m  and pressure tensor as derived by 
Goldman and Sirovich (ref. 22). Applying these equations to small  amplitude disturbances 
in a weakly ionized gas with neutral velocity un = 0 gives (to first order in the fluctuating 
quantities) 

-+ p s o v .  u = 0 
at N S  

25 pso +s :Aos V2 Ts = no^ vSn (Ts - Tso) 
at pso at 

The energy equations imply that there  is some external force that causes the electron and 
ion temperatures to be different under steady-state conditions. The temperatures of the 
ions and neutrals are assumed to be  equal. Note that s takes values e (for electrons) 
and i (for ions) and that n denotes neutrals. Also, ps, qs, ms, ps, and Ts a r e  the 
mass density, charge, mass ,  pressure,  and temperature,  respectively, for species s; 
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N	Fs is the force whose response we are calculating; vsn and vAn = 2ms vsn/(ms + mn) 
are, respectively, the effective collision frequencies for momentum and energy transfer 
with the neutrals; and vOs and ,Ios,the viscosity and thermal conductivity for charged 
particles in a weakly ionized gas ,  a r e  given by 

- PS 
70s --

Dsvssn 

where Ds and Cs are constants (of order  1or 2) that depend on the interparticle force 
law and the mass ratio between the electrons or ions and neutrals. 

-It is assumed that ps = pso + p i ,  p, - ps, + p.;, and Ts = Tso + TA with the fluctua­
tion quantities p;, p i ,  and T i  proportional to el(wt-kz). Since longitudinal disturbances 
have been specified, E, and u are in the z direction. 

"S
Using the mass and energy equations allows the momentum transport equations to be 

written in the following form: 

iwNo Fs 
N u  =-­o s  

k2KTszs 

where 

zS = hs + 2ieS[+, + 2(3DsqS)- 1] -28,2 

A =
S 

l + i(') 

? 5k 2KT,-
Os - I.'sn + 

2's 'snms 

and 8, and +, a r e  the normalized Doppler shift frequencies and collision frequencies 
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Comparison of equations (26) and (13) shows that the admittance functions for the 
electrons and ions considered separately are 

iwNo 
Y =-­e 

k2KTe 'e 

and 

ioNo 
Y.=-­1 

k2KTi 'i 

Thus the power spectrum of the electron density fluctuations {dq. (23 ) may be  expressec 
in  t e rms  of the macroscopic parameters  of the plasma and the differential backscattering 
c ross  section (eq. (11)) may be written as 

ob(o0 - W) dW = Nore2 p a  2 + z i  2 2 
(31) 

CY
2 (Zi + pze) + ZeZi p a  + z i  ;;w 

where p = Te/Ti and CY = (kAD)-', with the electron Debye length, A,,, equal to 
(KTeeo/Noe2)1/2. This is essentially the same expression, with slightly different 
notation as Farley's (ref. 6). However, the ze  and zi used here  have been derived 
from continuum equations rather  than from the kinetic equations Farley used. 

Examination of equations (27) and (29a) shows that z,*(u) = z s ( - ~ l ) .  Any function 
F(ze,  zi) with constant r ea l  coefficients also has this property, that is. F*(L?)= F ( - w ) .  
It follows that IF(w) l2 is an even function of w and that ImF(L1) is an odd function of x .  

Hence the differential scattering cross  section (eq. (31)) is an even function of CL'. 

For the case of equal electron and ion temperatures.  the cross section simplifies to 
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(32) 

Provided that the ion-neutral mean free path is less than the incident wavelength, eyua­
tion (32) gives resul ts  (Tanenbaum, ref. 16) that agree very well with those obtained b y  
Dougherty and Farley (ref. 5) using the Boltzmann equation with the Bhatnagar-Gross-
Krook (BGK) model for collisions with neutrals. 

Numerical Results 

The normalized differential c ross  section, as obtained f rom equation (3 1), is eval­
uated for four values of (Te/Ti) in figure 2 with a = 12. 7 
mi is chosen to  represent a mixture of NO+ and 0; ions). 
scat ter  spectrum (ref. 3) has a peak at w = kU

P 
(where U 

Electrorl lo io(, 

rdtio, 

.­

._
e 

U 

Ln 

2 .30 
0

U 

and mi = 31 amu (this value of 
Note that a typical Thomson 

P 
is the plasma sound speed) 

Normalized Doppler s h i f l  frequency, tli = (w/k)(mi/2xTi1122 

Figure 2. - Thomson scattering cross section as func t ion  of 
Doppler sh i f t  frequency. u = 12.7; normalized ion-neut ra l  
col l is ion frequency, cl'i, 1; normalized electron-neutral  
col l is ion frequency, $e, 0.1; i o n  mass, mi, 31 atomic mass 
units; Ci  = D i  = 2; Ce = De = 1. 
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which is due to scattering from the so-called ion acoustic waves in the plasma. In addi­
tion, the peak is sharp when there  is little damping of the ion acoustic waves, but 
broadens and eventually disappears when the damping increases.  Increasing the electron 
to ion temperature ratio causes the plasma sound speed to increase and the damping of 
ion acoustic waves due to collisions to decrease.  This broadens the spectrum and in­
creases  the relative amplitude of the resonance, as can be  seen in figure 2. The shape 
of the spectrum is essentially unaffected by a change in  +e/+i although the total power 
is changed. This is shown in figure 3 where the spectrum (normalized so that ob(w0) = 1) 
is plotted for two values of 

Electron to i o n  
col l ision 

frequency-
3" 3 . 0 ~  ratio, 
n-0 

3 
+ 

Normalized Doppler sh i f t  frequency, 9i = (w/k)(mi/2KTi) I/2 

Figure 3. -Comparison of spectral shape for two values of normalized electron to i o n  
col l ision frequency ratio. a = 12.7; normalized ion-neutral col l is ion frequency,
oi, 1; electron to i o n  temperature ratio, Te/Ti, 10; i o n  mass, mi, 31 atomic mass 
units; C i  = D i  = 2; Ce = De = 1. 

Discussion of Total Power 

The total backscattered power is given by 

Although this integral may easily b e  calculated numerically (see fig. 5).  an npprosininte 
analytic form can be  derived that is valid for CL, >> 1, p -< 10, and Gi 2 1. Equation 

(34) may be written using equation (31) as 
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where 

B = a2 ' e  

The first integral in equation (35) is easily evaluated using residue theory to find the 
Cauchy principal value, which is just given by -Ti  x (Residue at w = 0) since there  a r e  no 
poles in the lower half plane. Since ze M 1, I a!

2 + ze l 2  may be  approximated by 
( a !

2 + 1)2, and the second integral can be evaluated in  the same manner as the first. 
Thus equation (35a) becomes 

If ze = 1, the remaining integral gives zero contribution, and the total c ross  section 
is given by the first two t e rms  in equation (36). This is equivalent to Farley's approxi­
mate solution (ref. 6) and gives the identical result .  This expression is also given by 
Salpeter (ref. 12) and Buneman (ref. 14). Note that there  is no dependence on the colli­
sion frequencies in this approximation. 

The case of the limit a! - 00 (Debye length -0) may be  easily evaluated if it is as­
sumed that As may be  approximated by its low-frequency limit 

A s x l + - 2iw (37) 
0-s 

Equations (28) show that the approximation is certainly valid for Ae and should be fair ly  
good for Ai when I).1 -> 1, provided p is not too large,  since the main contribution to 
the total power then comes from the region oi <- 1 (see fig. 2).  Using equation (37) al­

15 



lows the integral in equation (36) to be  evaluated 

where 

with 

K. = 1+-+ 2 
1 2

3DiP5C.i 

Ke = 1 +-+ 2 

3 D e 4  

and 

For  small  Debye length ((I! -m), equation (38) shows that the total backscattered power is 
generally less  than that calculated from the collisionless theory, but it is always greater  
than (1+ p ) - l  and is dependent on both the electron and ion collision frequencies. This 
approximate solution for Qi = 1 is shown in figure 4 along with (1+. p)-', the numerical 
integration of equation (31) for (I! >> 1, and the large Te/Ti approximate solution of 
Farley (ref. 6) for the collisionless case. For qi > 1 the approximate solution should 
be  even closer to the exact solution. 

Figure 5 shows the total backscattering c ross  section (obtained by numerical integra­
tion) for  three values of qi and two values of For large values of IJ- the total 
backscattered power is l e s s  than that found from the collisionless theory, and it more 
closely follows the (1+ p)-' curve which is commonly used by experimentalists. The 
total power approaches the (1 + p)-' curve closely as Gi becomes larger ,  although it 
does not equal it in the limit as qe and qi -m . 

It should be  pointed out that qe a?d qi a r e  independent of temperature only when 
the interparticle force is that of hard spheres (see ref .  23, p. 251) .  In general, this is 
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Numer ica I 
integration 

1 10 1CQ 1000 
Electron to ion temperature ratio, Te/Ti 

Figure 4. - Comparison of approxiniale solution (eq. (38))arld 
the t r ue  value obtained from the numerical integration of 
equation (31) for the total bacltscattered power. (,'.Is0 shown 
are the approximate solution of Farley (ref. 6)for t hc  col l ision-
less case and the (1t T,/Ti)-l curve.) a = e;normalized 
ion-neutral collision frequency, $i, 1; normalized Electron-
neutral col l is ion frequency, q je ,  0. 1; ion mass, mi, 31 atomic 
mass units; Ci = Di = 2; Ce = De = 1. 

Electron to ion temperature ratio,'Te/Ti 

Figure 5. -Total backscattered power as funct ion of electron to 
ion tempcraturc ratio from numerical integration of equa­
t ion (31). a = 12.7; ion mass, mi, 31 atomic mass units;
C . = D . = z .  C = D  = 1,

I I r e e 

not the case,  and an additional temperature dependence would be introduced if the proper 
interaction were known and taken into account. However, this additional temperature 
dependence is not important to  the calculations presented in this report .  

EFFECT OF COLLISIONS ON THOMSON SCATTERING IN A MAGNETIC FIELD 

In this section the theory of Thomson scattering is extended to  include the effects of 
electron-neutral and ion-neutral collisions on the signal scattered from a plasma in a 
uniform constant magnetic field. 

It has been shown ( re fs .  4 and 10) that a magnetic field appreciably influences the 
Thomson backscattered signal only when the field is normal or  nearly normal to the di­
rection of propagation of the probing wave. Farley (ref. 6) has shown that for a collision-
less plasma the total backscattered power is markedly altered by a magnetic field when 
the electron temperature Te is not equal to the ion temperature Ti. Since, for the case 
of no magnetic field, the scattered power has been shown to be  dependent on the electron­
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neutral and ion-neutral collision frequencies for Te # Ti, it is not surprising that in the 
calculations presented here  the total backscattered power depends on the electron and ion 
temperatures,  the frequency of collisions, and also the magnitude and relative angle of 
the magnetic field. 

In the experimentally important range of Te/Ti between 1and 10, the total back-
scattered power is increased by the magnetic field - an effect also shown in Farley's col­
lisionless calculations. However, increasing the collision frequencies is shown to reduce 
the influence of the magnetic field and thus causes the scattered power to be  closer to the 
field f ree  case. It should b e  noted that when magnetic-field effects a r e  important, the 
total scattering c ross  section is not proportional to  (1+ Te/Ti)-' as it is (to a good ap­
proximation for small  T,/Ti) in the field-free case.  

EvaIuation of Backscattering Cross Section With Magnetic Field 

Providing that the incident frequency is much larger  than the electron plasma, colli­
sion, and cyclotron frequencies, the differential backscattering cross  section can then 
be  written as (derived in appendix B) 

Nor 
ab(w0 - W) dw = ­

2 m w  

The coordinate system is chosen so that the incident wave vector k0 is alined with the 
z axis and the magnetic field Eo l ies in the x-z plane and forms an angle p with $. 
The symbol t denotes the Hermetian conjugate, and [ lZz means that the expression is 
the zz component of the tensor.  The tensors Z_ and B, a r e  defined by

N N 

where 1-1= Te/Ti, Z and Z. a r e  normalized impedance tensors that characterize the"e M1 
response of the electrons and ions, respectively, to an applied force proportional to 
eiwt-ikz, and z_- is a tensor (closely related to the usual conductivity tensor) given by-1 
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-- 

0 

l - n  2 

0 

where n = kc/u.  Note that, for equal electron and ion temperatures,  	B = and the 
N" 

cross  section (eq. (B14) is then just proportional to the imaginary part of the zz com­
ponent of Z-'.x 

Me and Z. (evaluated at k = 2k0) to find the scat-It is only necessary to calculate Z 
Xl 

tering cross  section given by equation (B14). Other authors ( refs .  4 ,  10, and 13) have 
used kinetic theory to calculate Thomson scattering when magnetic field effects a r e  im­
portant. In appendix C the continuum equations for a weakly ionized plasma in a constant 

Me and Z. for the case where electron-neutral andmagnetic field are used to calculate Z 
Ml 

ion-neutral collisions are important. 
An approximation used by other authors ( refs .  4 and 10) may be  used to simplify the 

amount of matrix algebra needed to evaluate the c ross  section as given by equation (B14). 
It is to assume that the phase velocity of any wave which causes scattering is much less  
than the velocity of light c .  To use the approximation, the limit is taken as c ap­
proaches infinity in the evaluation of equation (B 14). The result  of this is to decouple the 
t ransverse and longitudinal waves. (The longitudinal oscillations a r e  the only ones that 
a r e  important here since the scattering is caused by the fluctuations in the electron num­
be r  density.) Applying this approximation leads to the following form of the backscatter­
ing cross  section 

where 

ze ze - z e  ze(E-1)zz -- xx YY XY YX (44)
Det(Z)N 

N 

and the elements of 	 Z, a r e  
N 
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This is equivalent to the c ross  section used by Farley (ref .  6) for his kinetic theory 
calculations. 

Cross Section for p =  90" 

As discussed previously, the magnetic field affects the backscattering c ross  section 
only when the incident wave is normal o r  nearly normal to the magnetic field. In this 
section the special case of 6 = 90' is examined because at this angle the effect of the 
magnetic field is maximized. For other angles the full equations presented in the previ­
ous section can be used i f  an evaluation of the c ross  section is desired. 

For p = 90°, the tensors Z defined by equation (C15) simplify to 
=S 

0 

where the upper sign is to be  taken for the electrons and the lower sign for the ions. The 
quantities xs, ys, zs, and As a r e  now defined as 

1 1 1 
ys = 2ie 

2Ds+s 
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1 

z s  = As + 2ies @s + 

2 - 28,2 (49) 
3Ds@s

1 +  

2The thermal conductivity As, given by equation (C14) becomes Xes/[ 1 + ( @s/@s)] 
for this special case of /3 = 90'. Note that the effect of a large magnetic field is to r e ­
duce the thermal conductivity in the direction normal to the field lines. This change in 
the definition of us (and hence As) may be  made by replacing the C which appears in 

S '  
equation (28b) with Cs[l + ( G S / q s )2 1. 

Me and Z.  and these in turn may be  used toEquation (46) may now be  used to find 2 M1' 
evaluate the exact expression for the backscattering cross  section by using equations 
(B14) to (B16). As in the general case, a simpler expression for the cross  section may 
be found by using the approximation that the velocity of light is large compared with the 
phase velocity of the plasma waves that cause the scattering. With this approximation, 
the backscattering c ross  section for  /3 = 90' becomes 

1 Zipa! 2 + -'i ­
ze dwub(wo - w) dw = Nore 

2 pi Im - + - a2 pi ­
'e p a2 +-'i 7Tw 

pi 

where 

P = 1 +  As2 
S 2 

yszs  - As 

?-id ys, 
zS' 

and As a r e  given by equations (48), (49), and (50). 
When the magnetic field approaches 0, As = 0 and Ps = 1, thus equation (51) reduces 
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to equation (31) developed for  the c ros s  section with no magnetic field. Furthermore,  for 
p = 0' & I I E&), Ps = 1 and hence the magnetic field does not change the scattering cross  
section when the magnetic-field lines a r e  parallel to the incident wave vector. 

Spectral Magnitude at Zero Doppler Shift for p = 90" 

In order to better understand the effect of the magnetic field on the Thomson scat ter­
ing spectrum, the magnitude of the spectrum can b e  evaluated at zero  Doppler shift for 
p = 90'. The-case considered is that where the cyclotron radius of the electrons is much 
smaller than both the electron-neutral mean f ree  path and the wavelength of the incident 
wave X o  but where the ion cyclotron radius is much larger  than both the ion-neutral mean 
f ree  path and A,. In t e rms  of the normalized variables defined by equations (C6), (C7), 
and (C8) these conditions may be  expressed by 

and 

2
@i<< *i2 , 1 

Furthermore,  it is assumed that the electron and ion temperatures are equal and also that 
a2 >> 1. Then equation (51) is evaluated in the limit as w - 0 to find 

n 

Nor 
0 (Wb o) d w = -

27 
dei (53) 

Several observations can b e  made about the spectrum based on this expression. First, 
with - 0 . 1  and *i - 1 ,  c (w  ) is primarily a function of and @e(or Gib o  
since = @i) i f  @e@i2 1. Increasing the magnetic field strength causes 
ab(wo) to become la rger ,  which implies a narrowing of the spectrum since the total cross  
section is independent of both collisions and the magnetic field for Te = Ti. With zero 
magnetic field, increasing the collision frequencies causes the spectrum to be  narrowed; 
however, here ,  where magnetic field effects a r e  impor tad ,  increasing the collision f re ­
quencies (up to the point where the ion collisions begin to dominate) causes the spectrum 
to be  broadened. The physical explanation is that, as the electron-neutral collision fre­
quency is increased, the electrons a r e  somewhat f r ee r  to move across  the field lines 
since their spiraling motion is broken up by the collisions; however, as the collision fre­
quency is further increased, the collisions eventually dominate the effect of the field, and 
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the spectrum again becomes sharply peaked (as when Bo = 0). Also the viscosity effects 
on the electron motion disappear for this case. The t e rm involving the thermal conduc­
tivity remains,  although the role  of +e is replaced by Thus, the continuum equa­
tions for the electrons retain their  validity even for Qe < 1, provided that 2 + +e2 > 1. 
Finally, note that ob(w0) is a sensitive function of +e/+i. This differs from the field-
f r e e  case (for (I! 

2 >> 1) where has only a slight effect on the spectrum (refs .  5 
and 16). 

Numerical Evaluation of Cross Section 

In figure 6 equation (51) has been numerically evaluated to show the influence of col­
lisions on the spectrum for p = 90’. The values chosen for the other parameters a r e  
typical of conditions found in the ionosphere at altitudes of about 100 kilometers if  the in-

I:o rma Iized 
i cn -neu t ra l  
col Iis ion 

I I I 
.05 . 10 . 15 .M 25 

Normalized Doppler sh i f l  frequency, ai = 

f i g u r e  6. - Normalized Thomson scattering crass section 
as funct ion of Doppler shi f t  frequency for various value5 
of normalized ion-neutra l  col l is ion frequencies 
(@i = ( ~ ~ ~ / k ) ( m ~ / 2 ~ T ~ ) l / ~ ) .Normalized ion cyclotron fre­
quency pi = (eBolkmi)(mi12~Ti)1‘2, 0.1; angle (p) between 
the  incident wave vector and the  magnetic field, 90”; a c 
12.7; electron to ion temperature ratio, TeITi, 1; normal­
ized electron-neutral col l is ion frequency, @e, 0.1 #i; 
ion mass, mi, 31 atomic mass units; C i  = Di  = 2; 
Ce = De = 1. 
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cident wavelength X o  equals 6 meters .  As discussed, we see that as Qi increases ,  the 
spectrum is broadened up to about Qi = 5. Then as Qi is increased further,  the collisions 
begin to dominate the magnetic field, and the spectrum begins to peak about the origin. 

The effect of the angle p on the spectrum is shown in figure 7 for two different col­
lision frequencies. This shows that the magnetic field affects the spectrum only for  P 
within a few degrees of 90' and that at the higher collision frequencies the relative change 
due to the field is less. 

Angle betwcen 
- incident wave 

vector and 
magnctic i iLIu, 

,r 39.2 

-

4. 2 r P 

3.0 b 

Normalizeti Doppler sh i f t  frequency, 9 i  = ( ~ / k ) ( m ~ / 2 ~ T ~ ) ~ "  
10(a) Normalized ion-neutra l  col l is ion frequency, fli, 1. (b) Normalized ion-neutra l  col l is ion frequency, li, 

Fikure 7. -Normalized Thomson scattaring cross section as funct ion of Doppler sh i f t  frequency for various values of B. Other 
parameters are the  same as those in f igure 6. 

For equal electron and ion temperatures,  neither collisions nor magnetic field affects 
the total cross  section, which for this case is given by reference 4 as 

2 l + a L  (54)'tot = *ore cl 

1 + 2ad 

However, when the electron and ion temperatures a r e  not equal, both collisions and 
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magnetic field strength influence the total c ross  section. In figure 8 the effect of a mag­
netic field normal to the incident wave on the total c ross  section calculated by numerically 
integrating equation (51) is shown. This figure points out that in the relatively common 
experimental range when Te/Ti is between 1 and 10, the total cross  section increases 
with Bo. Also, for large B field (electron cyclotron radius on the order  of, o r  smaller  
than, the wavelength of the incident wave), the total cross section may increase with 
Te/Ti rather  than falling off in accord with the usual (1+ Te/'Ti)-' relation. Farley 
(ref. 6) has published curves for the case of no collisions which show a similar effect of 
the magnetic field. 

In figure 9 the effect of collisions on the total cross section in the presence of a mag­
netic field ( cpi = 0. 1) is shown. For Te/Ti between 1and 10, the effect of collisions is 
to drive the curve of total scattered power toward the field-free case. 

The effect of the angle p on the total c ross  section is shown in figure 10. This 
again points out the fact that the magnetic field has an appreciable effect on the c ross  sec ­
tion only when the incident wave is nearly normal ( p  > 80') to the magnetic field for 
T,/T~ < 100. 

I:ormaIizeti io,, 

cyclotron 


fre?ucncy, 

1; i 


Figure 8. -Total backscattered powcr as function of CIEC 
t r o n  to ion  temperature rat io for eight values of nor­
malizeti ion  cyclotron frequency. t:ormalized i on -
neutra l  col l is ion frequency, 8i, 1; other  parameters 
are the same as in f igure 6. 

Ion cyclotron , .ngle 
irer:uency, 13 

!,i 

0. 1 90" 

Figure 0. -Total backscattered p w e r  as funct ion o f  elec­
t r o n  tc i o n  temperature rat io fo r  several values of 
normalize6 ion-neutral col l is ion irequency. Other 
parameters are the same as those in f igure 6. 
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Figure 10. -Total backscattered power as funct ion of  
electron to i o n  temperature rat io for various values of 
the angle between the incident wave and  the magnetic 
field. Normalizeu ion  cyclotron frequency, (ci, 0.1; 
normalized i o n  col l ision frequency, Oi, 1. Other 
parameters are the same as those in f igure 6. 

SCATTERING FROM A PIASMA WITH ELECTRON DRIFT 

Thomson scattering from a plasma in which the electrons have a net drift velocity 
relative to the ions has been discussed by Rosenbluth and Rostoker (ref. 13) for  a colli­
sionless plasma. They calculated the scattering for relative drift velocities below the 
critical value at which the instability of the ion acoustic wave occurs. They found that, 
as the drift velocity approaches the critical velocity at which the instability occurs ,  the 
spectrum develops a peak that becomes infinite as the critical velocity is reached. (The 
appearance of this infinity in the spectrum resul ts  from a breakdown of the linear theory. ) 

Here, the work of Rosenbluth and Rostoker is extended to include the effect of colli­
s ions,  and backscattering is calculated (in the stable regime) using the linearized contin­
uum equations and the fluctuation-dissipation theorem. It is assumed that the electrons 
and ions have Maxwellian velocity distributions and, for the sake of simplicity, that the 
ions have zero net velocity. Our model is thus a plasma in which the ions and neutral par­
ticles have no net fluid velocity and the electrons, which are assumed to have a Maxwellian 
velocity distribution, are drifting in the direction of the incident wave with a velocity be­
low the critical velocity at which the two-stream instability occurs.  Also, it is assumed 
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that the thermal velocity of the electrons is much greater than the drift velocity. In gen­
era l  this means that, for drift  velocities close to the critical velocity, the electron tem­
perature must be  greater  than the ion temperature. This seems t o  be reasonable, since 
for many physical situations in which the electrons a r e  drifting with respect to the ions 
(e. g. , in a gas discharge device) the electrons will b e  hotter than the ions. 

The critical drift velocity is dependent on the electron to ion temperature ratio,  the 
In gen­collision frequencies, and the magnitude and relative angle of the magnetic field. 

e ra l ,  the critical velocity is found to be  relatively independent of the electron temperature.  
With higher collision frequencies (which increase the net damping) larger  drift velocities 
are required to produce instability. If a magnetic field is present,  the critical drift veloc­
ity is smaller if  the electrons are drifting perpendicular to the field. 

When the wavelength is much smaller than the Debye length, (a<< l),the only 
change in the spectrum of the scattered signal is the Doppler shift corresponding to the 
electron drift velocity. Furthermore,  instabilities will not develop at these short wave­
lengths even for high electron drift velocities since there  is essentially no coupling be­
tween the electrons and ions over distances much less  than the Debye length. 

When the wavelength is much larger  than the Debye length ( a ,  >> l),the differential 
backscattering cross  section becomes unsymmetric about the frequency of the incident 
wave i f  the electrons have a net drift velocity. The spectrum develops a sharp peak which 
corresponds to scattering from the progressively more weakly damped ion acoustic waves 
as the drift velocity approaches its critical value. 

The total backscattered power is obtained by  numerical integration and is greatly en­
hanced as the drift velocity approaches the onset of instability. 

Backscatter Cross  Sect ion W i t h  E lec t ron  D r i f t  

The electrons and ions are both assumed to  have Maxwellian velocity distributions, 
with the electrons having a net fluid velocity vd in the direction of propagation of the 
incident wave. The power spectrum of the components of the stochastic force Es, which 
may be thought of as driving the fluctuations, is given by equation (B3) in a reference 
f r ame  in which the s species has zero net fluid velocity. Thus, in the laboratory r e fe r ­
ence frame,  the spectrum of is Doppler shifted by a frequency kVd and becomes 

K T ~k 2KT, 
(IF:(w) FY(w) 1) d o  = ­

277L3 i ( w  - kVd) byi - Zy;) dw (55) 

where Z
X S  

is the impedance tensor as measured in the laboratory frame. 
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This shows that, for scattering from a plasma in which both species of particles have 
Maxwellian distributions and are drifting with the s a m e  velocity, the scattered signal is 
merely Doppler shifted by a frequency equal to kVd. It will be  shown that this is also the 
result  for the case where the electrons a r e  drifting through the plasma while the ions re­
main stationary if  the wavelength is much smaller than the Debye length. 

The fluid velocity of the electrons is now assumed to b e  the sum of the constant drift 
velocity plus a small  part  proportional to eiwt-ikz; that is 

i w t  -ikz 
u = +:Le (56) 

When the transport equations a r e  linearized, with the zero-order te rms  assumed to  add 
to zero and the impedance tensor ZMe solved for in the same manner as done previously, 
the form remains identical with that given by equation (C17) o r  equation (46) except that 
the frequency w is replaced by its Doppler shifted value (w  - kVd). Or,  equivalently, 
Be is replaced by (ee - xe) where xe is the electron drift  velocity normalized with r e ­
spect to the electron thermal velocity; that is, 

The differential backscattering cross  section may formally be written in the same  
form as equation (B14) but with the tensor now defined as 

N-
B =  'e z, + -1 (@;I + z -l)-1 
M 

'e - Xe P - M I  

in place of equation (B16). The tensors Z% e  and Z. remain of the same form as given by
Mi 

equation (C17) except that, in ge, ,ge must be replaced by its Doppler shifted value, 

Be - xe. 
The approximate expression for p = 90' (eq. (51)) is likewise altered to read 

2 

p a  2 + -'i 
Z 2e a ,ob(w0 - w )  dw = Nore2 pi Im - + ­
'e 1-1 p a  +­

'e 'i 
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with Z e / P e  given by equations (49)and (52) but with P, again to b e  replaced by 

(ee - x,). 
For the case of a! - 0 (Debye length -m) the differential c ross  section (eq. (59)) 

reduces to 

rab(w0 - W )  dw = - No e  

which is the same  spectrum as for the zero  drift case except that the scattered signal is 
Doppler shifted by kVd. This is what one would expect for very large Debye lengths 
since the electrons then move independently of the ions, and the ions have no influence 
over the electrons, which actually cause the scattering. 

As the magnetic field strength Bo goes to zero,  Pe = Pi = 1 and the z
S 

are again 
given by equation (27) (with 8, replaced by ee - xe in ze). 

It must be emphasized that in order  to legitimately use  these expressions for the 
backscattering cross  section, one must be certain that the drift velocity of the electrons 
is less  than the critical velocity at which the two-stream instability s e t s  in. 

Numerical Evaluation of Cross Section 

The differential backscattering cross  section is evaluated in figure 11 for the case of 
zero  net electron drift velocity and for two drift velocities less than the critical drift 
velocity which corresponds to xe = 0.0055 for this particular set of parameters .  This 
figure shows that the spectrum changes from its symmetric shape for xe = 0 to  an un­
symmetric form when the electrons are drifting with respect to the ions. As the drift 
velocity approaches the onset of instability, the spectrum becomes very sharply peaked 
at a frequency corresponding to  the ion acoustic wave in the plasma. 

The total scattering c ross  section is enhanced when the electrons are drifting with 
respect to the ions. As the electron drift velocity approaches the point at which the insta­
bility commences , the  predicted total cross  section becomes infinitely large.  (In prac­
tice,  the scattered power is limited by nonlinear effects. ) This effect is shown in figure 
12  for four values of the normalized collision frequency $bi. 
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Figure 11. - Normalized Thomson scattering cross section 

a s  funct ion of Doppler shi f t  for  various values of no r ­
malized electron dr i f t  velocity. a = 170; normalized ion-
neutra l  col l is ion frequency, li,2; normalized electron-
neutra l  col l is ion frequency, le,0.2; electron to ion 
temperature ratio, 1; normalized ion cyclotron frequency, 
pi, 0.12; angle between inc ident  wave vector and magnetic 
field, p, 90"; Ce = 0, = 1; Ci = Di = 2. 
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Figure 12. -Total scattered power as funct ion of normalized 
dr i f t  velocity for several values of normalized ion-neutra l  
col l is ion frequencies. Magnetic-field strength, zero; 
a = 12.7; normalized electron-neutral col l is ion frequency, 
#e, 0.1 fi; electron to ion temperature ratio, 10; ion  mass, 
mi, 31atomic mass units; C i =  Di= 2-# C e = De = 1 . 
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SUMMARY OF RESULTS 

The theory of Thomson scattering has been extended to include the effects of colli­
sions for  scattering from a plasma with unequal electron and ion temperatures including 
the influence of a constant magnetic field and electron drift .  The theory presented here 
is based on the two-fluid continuum equations for a plasma and should provide a good de­
scription when the wavelength of the probing wave is larger than the ion-neutral mean 
f ree  path. 

When the ions and electrons are not at the same temperature,  the total backscattered 
power is shown to b e  dependent on the ion-neutral and electron-neutral collision frequen­
cies,  as well as the magnitude and relative angle of the magnetic field i f  one is present. 
For no magnetic field and electron to ion temperature ratio Te/Ti greater than or equal 
to 10, the total backscattered power is shown to be  substantially less  than that of colli­
sionless calculations but always greater  than a cross  section that varies with Te/Ti as 
(1+ Te/Ti)-'. For  example, with a, >> 1 (a,= h0/47rXD where Xo is the wavelength of 
the incident wave and A D  is the Debye length) Te/Ti = 20, and the ion-neutral mean f ree  
path hin - 1/5 A,, the normalized total backscattered power is about 1/7 of that predicted 
for  no collisions and about 22 

1 times the value given by (1+ Te/Ti)-'. 
As the electron-neutral and ion-neutral collision frequencies ven and vin increase,  

the scattered power approaches the (1+ Te/Ti)-' curve, although it does not reach it 
even in the limit veri, vin - D O .  Also, for Te/Ti > 5, a change in  the ratio of the colli-

I 

sion frequencies ven/vin can have a large effect on the total scattered power although 
the shape of the spectrum is essentially unchanged. 

A constant magnetic field affects Thomson scattering only when the field is normal 
to ,  or nearly normal to,  the direction of propagation of the incident wave. For Te/Ti 
in the common experimental range of 1to 10, the total scattered power is increased by 
the magnetic field. In fact, the scattered power may increase with Te/Ti rather than 
falling off in accord with the usual (1 + Te/Ti)-' relation. For  instance, with both the 
ion gyroradius and the ion-neutral mean f ree  path equal to 1/5 A,, with the angle between 
the incident wave and the magnetic field p equal to 90°, and with Te/Ti = 5, the total 
backscattered power is almost five t imes that calculated for the  field-free case. Increas ­
ing the collision frequencies lessens the influence of the field and causes the scattered 
power to become closer to the field-free case. In general, the  total scattered power is a 
function of the collision frequencies and the magnetic field strength except for the special 
case of Te = Ti when it is totally independent of both the collisions and the magnetic 
field. When electrons are drifting with respect to the ions, only the component of the 
drift velocity in the direction of the incident wave affects the backscattered signal. The 
spectrum is no longer symmetric about the incident frequency (as it is for no drift). If 
the Debye length is large compared with the wavelength of the incident wave, the only 
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effect on the spectrum is a Doppler shift corresponding to the component of the drift 
velocity in  the direction of the incident wave. However, i f  the Debye length is small  com­
pared with the wavelength, an instability of the ion acoustic wave develops as the drift 
velocity reaches a certain critical value. 

As the drift  velocity increases,  the spectrum of the backscattered signal develops a 
sharp  peak at a frequency shift (from the incident wave frequency) corresponding to the 
weakly damped ion acoustic wave. The total scattered power is enhanced by a nonzero 
drift velocity and, as the electron drift nears  the cri t ical  velocity, becomes very much 
greater  than that calculated for a quiescent plasma. For example, with no magnetic 
field, Te/Ti = 10, a! >> 1, and kin - 5xo, an electron drift velocity equal to 1/20 of the 
electron thermal velocity causes the total backscattered power to be increased by a factor 
of 14 over the zero-drift case.  

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 26, 1971, 
120-26. 
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APPENDIX A 

SYMBOLS 

s e e  eq. (50) 


s e e  eq. (C13) 


constant magnetic flux density 


s e e  eq. (B16) 


constant of order  1 or 2 


velocity of light 


s e e  eq. (C9) 


electric flux density 


constant of order  1 or  2 


electric field intensity 


electronic charge 


applied force 


s e e  eq. (C12) 


magnetic-field intensity 


Planck's cons tan t /2~  


generalized system response 


imaginary part 


J= 

current density 


s e e  eqs. (4Oa) and (40b) 


wave vector of scattering wave 


wave vector of incident wave 


wave vector of scattered wave 


linear dimension of scattering volume 


mass 


ambient electron number density 
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NS 


n 

pS 

P

& 

PS 

Q 

4s 
Re 

re 

sS 

TS 


T 
MS 


V 
N 


vd 
W 

a! 

P 
i3' 

r
N S  

Y 


AS 

AN 

number density 


index of refraction (for scattering wave) 


s e e  eq. (52) 


t raceless  pressure  tensor 


sca la r  pressure  


see eq. (39) 


charge 


r ea l  part 


classical  electron radius 


s e e  eq. (C10) 


equilibrium temperature 


temperature 


s e e  eq. (C11) 


plasma sound speed 


mean velocity 


generalized force 


electron drift velocity 

n 

energy in L' 


s e e  eq. (47) 

ioco/e 2 


generalized admittance tensor 


normalized impedance tensors (see eq. (B11)) 


normalized impedance function (see eq. (27)) 


l/(khD) 


anglebetween & and Eo 

s e e  eq. (35b) 


flux density 


square root of electron to ion mass ratio 


s e e  eq. (C19) 


fluctuating part of electron number density 
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A �  	 fluctuating part of permittivity 

Kronecker delta 

�0 


qos 
e 

OS 


K 

'in 

w 

'sn 

's n 

P 

'"e 

wO 


permittivity of medium 


permittivity of free space 


coefficient of viscosity 


scattering angle 


normalized Doppler shift frequency (see eq. (29a)) 


Boltzmann 's constant 


electron Debye length 


ion-neutral mean free path 


thermal conductivity (with Eo= 0) 


wavelength of incident wave 


thermal conductivity (5# 0) 


electron to ion temperature ratio 


effective collision frequency for momentum transfer 


effective collision frequency for energy transfer 


angle between incident electric field vector and ks 

N 

mass density 


s e e  eq. (C20) 


differential backscattering cross  section 


total backscattering cross  section 


normalized cyclotron frequency (see eq. (29b)) 


normalized electron drift velocity (see eq. (57)) 


normalized collision frequency (see eq. (C7) 


cyclotron frequency 


Doppler shift frequency 


plasma frequency 


frequency of incident wave 
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Subscripts : 

e 

i 

S 

so 

n 

i , j , k , l , m , n  

Superscripts 

* 
t 

electrons 

ions 

either electrons or ions 

zero -order quantity ; either electrons or  ions 

neutrals 

components of vectors o r  tensors  

complex conjugate 

Hermitian conjugate 
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APPENDIX B 

BACKSCATTERING CROSS SECTION FOR ANISOTROPIC MEDIUM 

A general tensor admittance function Y is defined in the same manner as 
R5S 

Dougherty and Farley (ref. 3): 

where zs is an applied force and Es is the resulting flux density. The rate of change 
of energy in a volume L~ is 

Applying the fluctuation-dissipation theorem (ref. 17) to the s species (for KT>> Eiw) 
gives the cross  spectral  density of the components of Fs. 

N 

This may be  thought of as the spectrum of the stochastic forces that a r e  driving the s 
species when no interaction due to  the electric fields is taken into account. The cross  
spectral  density is the Fourier transform of the cross  correlation function and is defined 
by 

* 
J( i F y ( ~ ) F ; ( w )  i) eioTdw = (Fa (t)FS(t+ TP 

With the inclusion of the force due to the electric field, the equation of motion for 
the electrons (and ions) is 
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N1 

N 
Y. 

Z 

N 
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Maxwell's equations provide another relation 

r - r . = y  * (e:)-e -1 =I 

with 

l - n  2 0 

0 1 - n  2 

0 0 

kand where the coordinate system has been chosen so that the wave vector N lies along 
the 	z axis. 

Using equations (B5)and (B6)and assuming that the stochastic forces and F. 

are uncorrelated lead to the cross  spectral  density of the electron fluctuations 

where 

Me * (Y N %1Y = Y =e + E 1  +y1)-1. (Y. + 21)
N 

z' = (zi + 
-1 .  Y. 

x and %I are definedNormalized impedance tensors !&, Z ,  

iwNo 
y =-z­
xs 2 

k KT, 

iwNo y=-z-
N x 

k2KTe 

iwNo 
Y --z­x1 - 2 x1 

k KT, I 
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The differential backscattering cross  section is proportional to the power spectrum 
of the Fourier component of the electron number density fluctuations with wave vector 
2k
N O  

(ref. 3) .  

The backscattering c ross  section is found by using equations (B7)to (B12) together 
with the continuity equation for the  electrons 

am- + v - r = o  
at - Ne 

to be  

where 

and 
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APPENDIX C 

CALCULATION OF IMPEDANCE TENSORS 

In this appendix the normalized impedance tensors  Z and Z. a r e  calculated for =e ,"I 
the electrons and ions considered separately; that is, without including the force due to 
the self-consistent electric field. The impedance tensor Z for the s species is de­

,"S 
fined by 

where l? is the flux density resulting from an applied force xs that is proportional to 
iwt-ikzNse 

The approach of Tanenbaum (ref. 11)is followed where the transport equations for 
mass ,  momentum, and energy are used. For small  amplitude disturbances in a weakly 
ionized gas with the mean velocity of the neutral particles zn equal to 0, it is found to 
first order  in the fluctuating quantities, that 

-+ psov u = 0 
at N S  

where p s ,  qs, nis, ps, and Ts a r e  the mass  density, charge, mass ,  pressure,  and 
temperature,  respectively, for species s ;  Eo is a constant magnetic field; and vsn 
and vLn = 2ms vs n/(m s + mn) a r e ,  respectively, the effective collision frequencies for 
momentum and energy transfer with the neutrals. The form of the t raceless  pressure 
tensor and heat flow t e rm developed by Chapman and Cowling (ref.  24) is used. For all 
fluctuating quantities varying as eiot-ikz, the divergence of the traceless pressure ten­
s o r  gS may be  written in the form 
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Normalized frequencies for the Doppler shift frequency, collision frequency, and 
cyclotron frequency a r e  defined by 

Then T 
R5S 

is a matrix whose elements are functions only of 

cs = T ($0. p 

ss = T (-%)s in  p 

where 0 is the angle between the incident wave vector Lo and the magnetic field B4. 
The upper sign is to be taken for the electrons, and the lower sign for the ions. The ten­
sor  T

Z S  
is then given by 

where 
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1+ 4cs2 

G =  c S  [- 2ss .)
%S 

1+ 4cs 1 +4cs2 

0 1 
2sS 

and 

-
1 -4 csss 

1 + 4 c s2 

A = O  -2 ss 
%S 1 + 4 c s2 

0 -4 
L 3 . 

The thermal conductivity is given by 

The coefficients for  viscosity and thermal conductivity for charged particles in a weakly 
ionized gas which appear in equations (C5) and (C14) a r e  given by 

- PS 
qos 	--

Ds'sn 

and 

15KPs-
-

4msCs'sn 
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where Ds and Cs a r e  constants (of order  1o r  2) that depend on the interparticle force 
law and the mass ratio between the electrons o r  ions and neutrals. 

By using the mass  and energy transport equations, we may write the momentum 
equations in the same  form as equation (Cl)with the impedance tensors gs given by 

hS -+2iGSes cos p 0 

i2i @ses cos p hS -+2i@ses s in  p 

-0 +2i@,eS s in  p As+ hs 

where 

h = 2ieS+bs - 2es2 
S 

and 

Now equation (C17) may b e  used to evaluate Z=e and Z.  in  t e rms  of plasma parameters .
X l  
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